domingo, 18 de noviembre de 2007

La matemática, gimnasia para el cerebro


1- Dos pintores y una pieza

En una casa hay una habitación grande que hay que pintar. Un pintor, llamémoslo A, tarda 4 horas en pintarla solo. El otro, a quien llamaremos B, tarda 2 horas. ¿Cuánto tardarían si los dos se pusieran a pintarla juntos? (Antes de avanzar: la respuesta no es 3 horas.)

2- Los tres recipientes con dos tipos de monedas que tienen las etiquetas cambiadas

Supongamos que tiene tres recipientes iguales que contienen monedas. Y no se puede ver lo que hay en el interior de cada uno. Lo que sí se puede ver es que en la parte de afuera de cada recipiente hay pegada una etiqueta.

Una dice: “Monedas de 10 centavos”.

Otra dice: “Monedas de 5 centavos”.

Y la tercera dice: “Mezcla”.

Un señor que pasó por el lugar antes que usted, despegó todas las etiquetas que había y las puso, a propósito, en recipientes que no correspondían. ¿Alcanza con elegir una sola moneda de un solo recipiente para tener suficiente información para reordenar las etiquetas y poner cada una en el lugar que le corresponde?

3- Las cuatro mujeres y el puente

El problema que sigue requiere planificar una estrategia. No es difícil, pero tampoco trivial. Eso sí: no tiene trampas. Es un ejercicio muy conocido en el mundo de los que juegan a planificar e inventar caminos donde, en apariencia, no los hay. Y tiene el atractivo extra de que permite entrenar al cerebro. Acá va:

Hay cuatro mujeres que necesitan cruzar un puente. Las cuatro empiezan del mismo lado del puente. Sólo tienen 17 (diecisiete) minutos para llegar al otro lado. Es de noche y sólo tienen una linterna. No pueden cruzar más de dos de ellas al mismo tiempo, y cada vez que hay una (o dos) que cruzan el puente, necesitan llevar la linterna. Siempre. La linterna tiene que ser transportada por cada grupo que cruza en cualquier dirección. No se puede “arrojar” de una costa hasta la otra. Eso sí: como las mujeres caminan a velocidades diferentes, cuando dos de ellas viajan juntas por el puente, lo hacen a la velocidad de la que va más lento.

Los datos que faltan son los siguientes:

- Mujer 1:

tarda 1 (un) minuto en cruzar

- Mujer 2:

tarda 2 (dos) minutos en cruzar

- Mujer 3:

tarda 5 (cinco) minutos en cruzar

- Mujer 4:

tarda 10 (diez) minutos en cruzar

Por ejemplo, si las mujeres 1 y 3 cruzaran de un lado al otro, tardarían 5 minutos en hacer el recorrido. Luego, si la mujer 3 retorna con la linterna, en total habrán usado 10 minutos en cubrir el trayecto.

Con estos elementos, ¿qué estrategia tienen que usar las mujeres para poder pasar todas –en 17 minutos– de un lado del río al otro?


4- Problema de la barra de chocolate

Supongamos que le doy una barra de chocolate que tiene forma de rectángulo. Esta barra tiene divisiones: 10 a lo largo y 20 a lo ancho. Es decir, en total, si uno partiera la barra, tendría 200 (doscientos) trozos de chocolate iguales.

La pregunta es: ¿cuál es el número mínimo de divisiones que hay que hacer para obtener los 200 bloquecitos?

Detalle: no importa el orden, ni el tamaño. Sólo se pregunta cuál es la forma más eficiente de cortar el chocolate (se supone que uno corta por el lugar donde figuran las divisiones).

El problema en sí mismo parece irrelevante. De hecho, lo parece porque lo es. Pero lo que no resulta irrelevante es advertir que, en la búsqueda de la solución, uno tuvo que imaginar diferentes situaciones. Quizá no le sirvieron para este ejemplo en particular, pero son caminos por los que uno, o bien ya anduvo, o bien los acaba de generar en su cerebro. ¿Cómo sabemos, o mejor dicho, cómo sabe usted que no va a utilizar en algún momento algo de lo que acaba de pensar? Más aún: ¿cómo sabe que algo que hoy tuvo que descartar no le va a servir mañana para algo que hoy no puede imaginar? Tener este tipo de problemas permite entrenar el cerebro y estimular la imaginación. Nada más. Nada menos.

5- El cronómetro y las infinitas monedas

La mejor manera de desafiar la intuición, provocar al cerebro, entrar en conflicto con la lógica, es plantear un problema que involucre al infinito. O mejor dicho, que involucre a conjuntos infinitos. Al mismo tiempo, estos casos suelen activar una catarata de respuestas contradictorias, de debates internos que muestran, una vez más, la riqueza de nuestro intelecto, al que no siempre aprovechamos ni entrenamos.

Le propongo, entonces, pensar lo siguiente: supongamos que usted tiene infinitas monedas. (Sí, ya sé: infinitas monedas NO HAY, pero éste es un problema que requiere “estirar” la imaginación hasta ese lugar… ¿se anima?). Supongamos que en una habitación está usted con un amigo y que entre los dos tienen infinitas monedas. Como las monedas son todas iguales (digamos de 1 peso), ustedes les pusieron un “número” a cada una y las ordenaron en forma creciente (o sea, primero la número 1, luego la 2, la 3, etc.). Además, en la habitación hay:

a) una caja enorme (en donde uno de ustedes va a empezar a

colocarlas), y

b) un cronómetro.

El proceso que va a empezar ahora es el siguiente: yo hago arrancar el cronómetro, que empieza en la posición 0 y dará una vuelta hasta llegar a cubrir 60 segundos (1 minuto). Usted tiene 30 segundos para colocar en la caja las monedas numeradas del 1 al 10. Una vez hecho esto, su amigo retira la moneda que lleva el número 1. Ahora, les quedan sólo 30 segundos en el reloj y nos empezamos a apurar. En la mitad del tiempo que les queda, o sea, en los siguientes 15 segundos, usted coloca en la caja las monedas del 11 al 20 y, rápidamente, su amigo retira de la caja la moneda que lleva el número 2. Ahora quedan 15 segundos antes de que se cumpla el minuto. En la mitad de ese tiempo (o sea, 7 segundos y medio), usted tiene que colocar en la caja las monedas numeradas del 21 al 30, y su amigo retirará de la caja la moneda número 3.

Y así continúa el proceso indefinidamente: usted usa la mitad del tiempo que queda hasta completar el minuto para ir colocando diez monedas por vez en la caja, y su amigo va retirando (en forma ordenada) una por vez. Por ejemplo, y para ratificar que entendimos el proceso, en el próximo paso, en la mitad del tiempo que queda (3 segundos y tres cuarto) usted coloca en la caja las monedas numeradas del 31 al 40 y su amigo retira la moneda número 4.

Creo que se entiende el procedimiento. En cada paso, usamos la mitad del tiempo que nos queda para ir colocando, sucesivamente –y en forma ordenada–, 10 monedas y sacando también en forma consecutiva la moneda con el número más chico. Obviamente, a medida que va avanzando el cronómetro y se va acercando a cumplir con el minuto pautado, tenemos que apurarnos cada vez más. La idea es ir reduciendo el tiempo a la mitad para colocar 10 monedas y retirar 1.

La pregunta que tengo para hacer es la siguiente: una vez terminado el tiempo (o sea, cuando expiraron los 60 segundos), ¿cuántas monedas hay en la caja?

La tentación es decir que si trabajan los dos juntos van a tardar 3 horas en pintar la pieza. Sin embargo, uno contesta eso porque, en principio, no está pensando. Basta advertir que, si uno de los dos pintores trabajando solo tardaría 2 horas, no es posible que con ayuda de otro ¡tarden más!

Estoy seguro de que hay muchísimas maneras de llegar a la solución. Más aún: ni siquiera creo que las que voy a proponer sean las mejores. Es decir: lo invito a que imagine una respuesta que sea atractiva por lo breve y contundente. Por eso es que creo que no vale la pena leer lo que figura más abajo… Pero, si aun así usted insiste, aquí va.

Le propongo pensar lo siguiente. En una hora, el pintor que pinta más rápido, B, pinta la mitad de la pieza. El otro, A, mientras tanto, pinta una cuarta parte (ya que, como tarda 4 horas en pintar todo, en una hora pinta justo la cuarta parte de la pieza). Ahora bien, hasta acá, entre los dos pintaron las tres cuartas partes.

Relea lo que acabo de escribir: tres cuartas partes. O sea, tres veces una cuarta parte (eso es lo que significa tres cuartos de algo). Y tardaron una hora en hacerlo. Por lo tanto, como queda una cuarta parte por pintar, les hace falta la tercera parte de una hora. Piénselo conmigo otra vez: si en una hora pintaron tres cuartos, para pintar un cuarto (que es la tercera parte de 3/4), les hace falta usar la tercera parte de una hora, o sea, 20 minutos.

MORALEJA: los dos pintores juntos tardarán 1 hora y 20 minutos para pintar la pieza.


2- Sí, se puede. Uno retira una moneda del recipiente que dice “Mezcla”. Se fija qué tipo de moneda es. Puede ser o bien de 5 centavos o de 10. Supongamos que es una moneda de 5. Como la etiqueta de la que sacó la moneda decía “Mezcla”, está claro que ese recipiente no es el de la mezcla. Entonces, significa que ya encontró el recipiente al cual ponerle la etiqueta que diga “Monedas de 5 centavos”. Por otro lado, el recipiente que tiene la etiqueta que dice “Monedas de 10 centavos” tiene que ser el que contenga la “mezcla”. ¿Por qué? Porque, por un lado, no puede ser el de las monedas de 10 porque, si no, tendría la etiqueta correcta. Luego, sólo puede ser el de las monedas de 5 o el de la mezcla. Pero el de las monedas de 5 tampoco puede ser, porque ésa fue la primera que sacamos. Luego, allí debería decir “Mezcla”.

Listo. En el primer recipiente va la etiqueta que dice “Monedas de 5 centavos”, en el que dice “Monedas de 10 centavos” va la que dice “Mezcla” y en el que queda va la etiqueta que dice “Monedas de 10 centavos”.


3- Primer viaje: van las mujeres 1 y 2. En total usaron 2 minutos.

Segundo viaje: vuelve la mujer 2 con la linterna. Pasaron 4 minutos.

Tercer viaje: van las mujeres 3 y 4. Ellas tardan 10 minutos, más los 4 que se habían usado antes, suman 14.

Cuarto viaje: vuelve la mujer 1 con la linterna (que había quedado en la otra orilla luego del primer viaje). Total consumido: 15 minutos.

Quinto (y último) viaje: van las mujeres 1 y 2. Tardan 2 minutos en este viaje, y en total, 17 minutos.


4- Lo típico es empezar dividiendo la barra por la mitad. Luego, hacer lo mismo con ambas mitades: es decir, en cada paso, partir cada bloque por la mitad. En realidad, lo interesante es que no importa en qué orden usted haga los cortes. La idea es mirar el problema desde otro lugar. Después de cada corte, uno tiene dos bloques de chocolate.

Cuando corte cualquiera de esos dos bloques (independientemente de dónde o cómo lo corte), va a tener tres bloques. O sea, cada vez que corta, agrega un bloque más a los que tenía antes. Luego, después de 199 divisiones, uno tiene las 200 piezas de chocolate que buscaba. Es decir, 199 es la cantidad mínima de cortes que hay que hacer. Menos, no alcanzarían. Más, no le harían falta tampoco.

Lo que esto enseña es que cualquier camino conduce a la solución ideal. Y eso es lo que vale la pena destacar, más allá del problema en sí mismo: haga lo que haga, o haya hecho lo que haya hecho, su solución fue perfecta. Sólo que el argumento que figura en el párrafo anterior es lo que justifica que no hay ninguna otra forma más efectiva.


5- La tentación es decir, naturalmente, que en la caja hay infinitas monedas. De hecho, después de los primeros 30 segundos hay 9 monedas, después de los 45 hay 18 monedas. Pasados 52 segundos y medio, hay 27 monedas, y luego de 56 segundos y un cuarto, 36 monedas.

Es decir, luego del primer tramo, quedaron 9 monedas; después del segundo, 18. Luego del tercero, 27. Luego del cuarto, 36. La idea es que, después de cada parte del proceso, aumentamos en 9 la cantidad de monedas. Más aún: si uno “detuviera” el reloj en cualquiera de los pasos, en la caja habría un número de monedas que sería un múltiplo de 9. (¿Entiende por qué? Es que en cada paso ponemos 10 y sacamos 1.)

Luego de este razonamiento que acabo de hacer, es esperable que uno tienda a suponer que hay infinitas monedas en la caja cuando termina el proceso. Sin embargo, eso es falso. En realidad, en la caja ¡no quedó ninguna moneda! Veamos por qué. ¿Qué moneda puede haber quedado en la caja? Elija usted un número de moneda cualquiera (claro… como usted no puede hacerlo, voy a elegir yo, pero lo invito a que haga el razonamiento por su cuenta): por ejemplo, la número 3.

¿Pudo haber quedado la número 3 en la caja? ¡No!, porque ésa fue la que su amigo sacó luego del tercer paso.

¿Pudo haber quedado la número 20 dentro de la caja? ¡No!, tampoco ésta, porque luego del paso número veinte sabemos que esa moneda la sacamos.

¿Podrá ser la número 100? Tampoco, porque luego del centésimo paso, la sacamos a esa también.

Entonces, otra vez: ¿qué moneda quedó dentro de la caja? Como se advierte, cualquier moneda que crea que quedó adentro tendrá que tener un número (digamos el 147.000), pero, justamente, al haber llegado al paso 147.000 seguro que su amigo sacó también esa moneda de la caja.

MORALEJA: a pesar de que atenta fuertemente contra la intuición, el hecho de ir sacando las monedas de la forma en la que describí más arriba, garantiza que, cuando pase el minuto, ¡no quedará ninguna moneda en la caja!

Fuente: Perfil

No hay comentarios: